Q 03

Two conductors have the same resistance at 0° C but their temperature coefficients of resistance are α_1 and α_2 . The respective temperature coefficients of their series and parallel combinations are nearly [2010]

(a)
$$\frac{\alpha_1 + \alpha_2}{2}$$
, $\alpha_1 + \alpha_2$ (b) $\alpha_1 + \alpha_2$, $\frac{\alpha_1 + \alpha_2}{2}$

(c)
$$\alpha_1 + \alpha_2, \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$$
 (d) $\frac{\alpha_1 + \alpha_2}{2}, \frac{\alpha_1 + \alpha_2}{2}$

answer

(d)
$$R_1 = R_0 [1 + \alpha_1 \Delta t]$$
; $R_2 = R_0 [1 + \alpha_2 \Delta t]$
In Series, $R = R_1 + R_2$
 $= R_0 [2 + (\alpha_1 + \alpha_2) \Delta t]$
 $= 2R_0 \left[1 + \left(\frac{\alpha_1 + \alpha_2}{2}\right) \Delta t\right]$
 $\therefore \alpha_{eq} = \frac{\alpha_1 + \alpha_2}{2}$
In Parallel . $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$
 $= \frac{1}{R_0 [1 + \alpha_1 \Delta t]} + \frac{1}{R_0 [1 + \alpha_2 \Delta t]}$
 $= \alpha_{eq} = \frac{\alpha_1 + \alpha_2}{2}$